Abstract
Four months of eddy correlation data collected over a grass field and a nearby sage brush community are analyzed to examine the adjustment of the boundary-layer structure as it flows from the heated brush to the snow-covered grass. The grass site includes a 34-m tower with seven levels of eddy correlation data. The midday heat flux over the snow-covered grass and bare ground surfaces is often downward particularly with melting conditions, while the corresponding heat flux over the brush is almost always upward. For most of these cases, a stable internal boundary layer over the snow is well defined in terms of vertical profiles of the buoyancy flux over the snow-covered grass. The stable internal boundary layer is generally embedded within a deeper layer of flux divergence corresponding to increasing upward heat flux with height above the internal boundary layer. With thin snow cover, the surface heat flux over the grass is weak upward due to heating of grass protruding above the snow so that the flow adjusts to a decrease of the upward surface heat flux in the downwind direction. This common case of an adjusting boundary layer contrasts with the formation of an internal boundary layer due to a change of sign of the surface heat in flux the downwind direction. The adjustment of the boundary layer to the decrease of the surface heat flux leads to vertical divergence of the upward heat flux in contrast to the usual heated boundary layer over homogeneous surfaces. The consequences of the cooling due to the vertical divergence of the heat flux are discussed in terms of the heat budget of the adjusting and internal boundary layers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.