Abstract
The relationship between changes in sea‐surface height, bottom pressure, and overturning is explored using isopycnal model experiments for the North Atlantic. Changes in high‐latitude forcing are communicated rapidly over the basin through boundary wave propagation along the continental slope, involving a hybrid mixture of Kelvin and topographic Rossby waves, as well as spreading more slowly through advection along the western boundary. This wave communication leads to coherent signals in sea‐surface height and bottom pressure variability extending for several thousand kilometers along the continental slope. The model results are in broad agreement with altimetric diagnostics, and the patterns only alter in detail with the realism of the topography. The adjustment in bottom pressure is directly linked to a change in overturning since west‐east contrasts in bottom pressure are associated with a zonal integral in the meridional geostrophic flow. Correlation patterns reveal that temporal changes in overturning are primarily connected to the vertical contrast in bottom pressure, across the shelf and continental slope, along the western boundary.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.