Abstract
AbstractOn a compact globally hyperbolic Lorentzian spin manifold with smooth space-like Cauchy boundary, the (hyperbolic) Dirac operator is known to be Fredholm when Atiyah–Patodi–Singer boundary conditions are imposed. This chapter explores to what extent these boundary conditions can be replaced by more general ones and how the index then changes. There are some differences to the classical case of the elliptic Dirac operator on a Riemannian manifold with boundary.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.