Abstract
In this paper, we consider a class of nonlinear second‐order functional differential equations with piecewise constant arguments with applications to a thermostat that is controlled by the introduction of functional terms in the temperature and the speed of change of the temperature at some fixed instants. We first prove some comparison results for boundary value problems associated to linear delay differential equations that allow to give a priori bounds for the derivative of the solutions, so that we can control not only the values of the solutions but also their rate of change. Then, we develop the method of upper and lower solutions and the monotone iterative technique in order to deduce the existence of solutions in a certain region (and find their approximations) for a class of boundary value problems, which include the periodic case. In the approximation process, since the sequences of the derivatives for the approximate solutions are, in general, not monotonic, we also give some estimates for these derivatives. We complete the paper with some examples and conclusions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.