Abstract

We consider a boundary value problem for a second-order linear elliptic differential equation with constant coefficients in a domain that is the exterior of an ellipse. The boundary conditions of the problem contain the values of the function itself and its normal derivative. We give a constructive solution of the problem and find the number of solvability conditions for the inhomogeneous problem as well as the number of linearly independent solutions of the homogeneous problem. We prove the boundary uniqueness theorem for the solutions of this equation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.