Abstract
Boundary value techniques for the solution of initial value problems of ODEs, despite their apparent higher cost, present some important advantages over initial value methods. Among them, there is the possibility to have greater accuracy, to control the global error, and to have an efficient parallel implementation. In this paper, the same techniques are applied to the solution of linear initial value problems of DAEs. We have considered three term numerical methods (Midpoint, Simpson, and an Adams type method) in order to obtain a block tridiagonal linear system as a discrete problem. Convergence results are stated in the case of constant coefficients, and numerical examples are given on linear time-varying problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.