Abstract

A new boundary treatment considering uniform particle distribution using additive boundary particles for the incompressible smoothed particle hydrodynamics (ISPH) method is proposed. With this new boundary treatment, the solid boundary can be easily modeled just following the geometry configuration and consequently the simulations of fluid–structure interaction problems can be simplified. The efficiency of this new boundary treatment is analyzed, and the implementations are compared with other exiting boundary treatments such as repulsive force and ghost particles. Simulations of the 2D dam-breaking case, static tank, and 2D u-tube test are carried out as examples to demonstrate the performance of this new boundary treatment. It is shown that better predictions can be gained with the new boundary treatment for the pressure distribution in these cases than those obtained from other boundary treatments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call