Abstract

We consider the problem of defining spacelike-supported boundary-to-bulk propagators in AdSd+1 down to the unitary bound ∆ = (d − 2)/2. That is to say, we construct the ‘smearing functions’ K of HKLL but with different boundary conditions where both dimensions ∆+ and ∆− are taken into account. More precisely, we impose Robin boundary conditions, which interpolate between Dirichlet and Neumann boundary conditions and we give explicit expressions for the distributional kernel K with spacelike support. This flow between boundary conditions is known to be captured in the boundary by adding a double-trace deformation to the CFT. Indeed, we explicitly show that using K there is a consistent and explicit map from a Wightman function of the boundary QFT to a Wightman function of the bulk theory. In order to accomplish this we have to study first the microlocal properties of the boundary two-point function of the perturbed CFT and prove its wavefront set satisfies the microlocal spectrum condition. This permits to assert that K and the boundary two-point function can be multiplied as distributions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.