Abstract

We construct boundary states for supertubes in the flat spacetime. The T-dual objects of supertubes are moving spiral D1-branes (D-helices). Since we can obtain these D-helices from the usual D1-branes via null deformation, we can construct the boundary states for these moving D-helices in the covariant formalism. Using these boundary states, we calculate the vacuum amplitude between two supertubes in the closed string channel and read the open string spectrum via the open closed duality. We find there are critical values of the energy for on-shell open strings on the supertubes due to the non-trivial stringy correction. We also consider supertubes in the type IIA Godel universe in order to use them as probes of closed timelike curves. This universe is the T-dual of the maximally supersymmetric type IIB PP-wave background. Since the null deformations of D-branes are also allowed in this PP-wave, we can construct the boundary states for supertubes in the type IIA Godel universe in the same way. We obtain the open string spectrum on the supertube from the vacuum amplitude between supertubes. As a consequence, we find that the tachyonic instability of open strings on the supertube, which is the signal of closed time like curves, disappears due to the stringy correction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.