Abstract

In this paper, we study the stabilization problem of vibration of linearized three-dimensional nonlocal micropolar elasticity. For this purpose, we need to demonstrate the well-posedness of the system of equations governing the vibration of three-dimensional nonlocal micropolar media for both forced (i.e. with boundary feedback) and unforced cases. We assume the non-homogeneous system of equations for the unforced (uncontrolled) case to establish the well-posedness. It should be pointed out that the well-posedness of the evolution equations in micropolar case has been studied by many authors; but, the well-posedness in the nonlocal micropolar is an open problem. Our tools in well-posedness analysis are the semigroup techniques. Afterwards, we pursue the stabilization problem and show that the vibration of the nonlocal micropolar elastic media will be eventually dissipated under boundary feedback actions consisting of stress and couple stress feedback laws. These control laws are simple, linear and can be easily implemented in practical applications. The stabilization proof is accomplished using Lyapunov stability and LaSalle’s invariant set theorems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call