Abstract
We investigate an initial-boundary value problem for a quasilinear nonhomogeneous, anisotropic Maxwell system subject to an absorbing boundary condition of Silver & Müller type in a smooth, bounded, strictly star-shaped domain of R3. Imposing usual smallness assumptions in addition to standard regularity and compatibility conditions, a nonlinear stabilizability inequality is obtained by showing nonlinear dissipativity and observability-like estimates enhanced by an intricate regularity analysis. With the stabilizability inequality at hand, the classic nonlinear barrier method is employed to prove that small initial data admit unique classical solutions that exist globally and decay to zero at an exponential rate. Our approach is based on a recently established local well-posedness theory in a class of H3-valued functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.