Abstract

We study the boundary stabilization of one-dimensional cross-diffusion systems in a moving domain. We show first exponential stabilization and then finite-time stabilization in arbitrary small-time of the linearized system around uniform equilibria, provided the system has an entropic structure with a symmetric mobility matrix. One example of such systems are the equations describing a Physical Vapor Deposition (PVD) process. This stabilization is achieved with respect to both the volume fractions and the thickness of the domain. The feedback control is derived using the backstepping technique, adapted to the context of a time-dependent domain. In particular, the norm of the backward backstepping transform is carefully estimated with respect to time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call