Abstract
Following McShane, we employ the stable norm on the homology of the modular torus to investigate the Markov ordering on the set of relatively prime integer pairs (q,p) with q≥p≥0. Our main theorem is a characterization of slopes along which the Markov ordering is monotone with respect to q, confirming conjectures of Lee-Li-Rabideau-Schiffler that refine conjectures of Aigner. The main tool is an explicit computation of the slopes at the corners of the stable norm ball for the modular torus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.