Abstract

The slip phenomena in gas mixtures are of fundamental significance in the specification of boundary conditions for flows in the slip regime. In a recent paper, new explicit results for the slip coefficients appropriate to binary gas mixtures were reported. The present work being reported extends the previous work to a higher level of accuracy by involving a higher order Chapman-Enskog expansion. In particular, new expressions for the slip coefficients are presented which are applicable for arbitrary models of the intermolecular interaction. Limiting expressions for the slip coefficients are given (for a simple gas) and the accuracy of the theory is discussed. Numerical calculations of the slip coefficients for different binary gas mixtures using the first and second order Chapman-Enskog approximations and the rigid sphere and Lennard-Jones (12-6) potential models have been carried out. The thermal creep and diffusion slip coefficients are found to be sensitive to the order of the approximation and to the potential model used. A comparison of the new higher order results with some of our previously obtained experimental data for the thermal transpiration effect has also been carried out and shows excellent agreement between the theory and the experiments which confirms the accuracy of the theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.