Abstract

The paper investigates the effects of surface stiffness on the slip process aiming to obtain a better insight of the momentum transfer at nanoscale. The surface stiffness is modeled through the stiffness, κ, of spring potentials, which are employed to construct the thermal walls. It is shown that variations of stiffness, κ, influence the slip mechanism either toward slip or stick conditions. Increasing the values of κ alters the oscillation frequency and the mean displacement of the wall particles toward higher and lower values, respectively. Our results suggest that the amount of slip produced as a function of stiffness follows a common pattern that can be modeled through a fifth-order polynomial function.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.