Abstract
The possible occurrence of a viscous region near a surface from which there is rapid efflux of gas, accompanied by large heat transfer, is postulated and investigated theoretically. Such a viscous region, denoted as a boundary shock wave, may occur in the case of a large high-speed meteor entering the earth's atmosphere, when a very high rate of vaporization induces translational non-equilibrium. The conditions across a boundary shock wave and its structure are calculated from the appropriate macroscopic equations reduced to closed-form expressions under the restrictions of a perfect gas, flowing at constant total enthalpy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.