Abstract

The boundary behaviour of solutions of stochastic PDEs with Dirichlet boundary conditions can be surprisingly—and in a sense, arbitrarily—bad: as shown by Krylov [SIAM J. Math. Anal. 34 (2003) 1167–1182], for any $\alpha>0$ one can find a simple $1$-dimensional constant coefficient linear equation whose solution at the boundary is not $\alpha$-Hölder continuous. We obtain a positive counterpart of this: under some mild regularity assumptions on the coefficients, solutions of semilinear SPDEs on $\mathcal{C}^{1}$ domains are proved to be $\alpha$-Hölder continuous up to the boundary with some $\alpha>0$.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.