Abstract
ABSTRACT In this paper, we establish sharp well-posedness results for tangential derivative problems for the Laplacian with data in L p , 1 < p < ∞, on curvilinear polygons. Furthermore, we produce norm estimates/formulas for inverses of singular integral operators relevant for the Dirichlet, Neumann, tangential derivative, and transmission boundary value problems associated with the Laplacian in a distinguished subclass of Lipschitz domains in two dimensions. Our approach relies on Calderón-Zygmund theory and Mellin transform techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.