Abstract
This work focuses on predictive control of linear parabolic partial differential equations (PDEs) with boundary control actuation subject to input and state constraints. Under the assumption that measurements of the PDE state are available, various finite-dimensional and infinite-dimensional predictive control formulations are presented and their ability to enforce stability and constraint satisfaction in the infinite-dimensional closed-loop system is analyzed. A numerical example of a linear parabolic PDE with unstable steady state and flux boundary control subject to state and control constraints is used to demonstrate the implementation and effectiveness of the predictive controllers
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.