Abstract
Vertical-arrow fluctuations near the boundaries in the six-vertex model on the two-dimensional NxN square lattice with the domain wall boundary conditions are considered. The one-point correlation function ("boundary polarization") is expressed via the partition function of the model on a sublattice. The partition function is represented in terms of standard objects in the theory of orthogonal polynomials. This representation is used to study the large N limit: the presence of the boundary affects the macroscopic quantities of the model even in this limit. The logarithmic terms obtained are compared with predictions from conformal field theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physical review. E, Statistical, nonlinear, and soft matter physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.