Abstract

Various universal features of relativistic rotating strings depend on the organization of allowed local operators on the worldsheet. In this paper, we study the set of Neumann boundary operators in effective string theory, which are relevant for the controlled study of open relativistic strings with freely moving endpoints. Relativistic open strings are thought to encode the dynamics of confined quark-antiquark pairs in gauge theories in the planar approximation. Neumann boundary operators can be organized by their behavior under scaling of the target space coordinates Xμ, and the set of allowed X-scaling exponents is bounded above by +1/2 and unbounded below. Negative contributions to X-scalings come from powers of a single invariant, or “dressing” operator, which is bilinear in the embedding coordinates. In particular, we show that all Neumann boundary operators are dressed by quarter-integer powers of this invariant, and we demonstrate how this rule arises from various ways of regulating the short-distance singularities of the effective theory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.