Abstract
In this paper we study the boundary observability estimate of time discrete Schrodinger equations in a bounded domain. By means of a time discrete version of the classical multiplier technique, we prove the uniform observability inequality of the solutions in an appropriate filtered space in which the high frequency components have been filtered. In this way, the well-known boundary observability property of the Schodinger equation can be reproduced as the limit, as , h → 0 of the observability of the time discrete one. Better than the existing result in Ervedoza et al. (2008), our alterative proof shows the rigorous relationship between the filtering parameter and the optimal observation time T. Moreover, the latter one tends to zero as the time scale tends to zero. Finally, the optimality of the order of the filtering parameter is also established for lower dimensional case.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Mathematical Modelling and Numerical Optimisation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.