Abstract
Lubrication may be defined as any method used to achieve control of friction and wear of interacting surfaces in relative motion under load. Gases, liquids, and solids have been used successfully as lubricants. To prevent surface contact, liquids and gases provide a film under hydrodynamic pressure to support the load.When the load is high and/or the speed is low, the hydrodynamic or hydrostatic pressure may not be sufficient and the surfaces come into close contact. The amount and the extent of the surface contact depends on many factors: surface roughness, fluid film pressure, normal load, hardness of the materials, etc. When the surfaces come into close contact, many of the asperities undergo elastic deformation. The condition is generally referred to as elasto-hydrodynamic lubrication (EHL). EHL theories are well-developed. They describe and predict the surface temperatures, fluid film thickness, and hydrodynamic pressures. Contact pressure increases beyond the EHL conditions causes asperities to deform plastically and thinning of the fluid film. When the average fluid film thickness falls below the average surface roughness, the interaction between the contacting surfaces becomes the dominant factor in supporting the load.This condition is referred to as the boundary lubrication (BL) regime. Theories for BL are not well-developed and the detailed processes are not understood. The classical view of boundary lubrication postulates the formation of a surface chemical film which is easily sheared and protects the surface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.