Abstract

In boundary line analysis a biological response (e.g., crop yield) is assumed to be a function of a variable (e.g., soil nutrient concentration), which limits the response in only some subset of observations because other limiting factors also apply. The response function is therefore expressed by an upper boundary of the plot of the response against the variable. This model has been used in various branches of soil science. In this paper we apply it to the analysis of some large datasets, originating from commercial farms in England and Wales, on the recorded yield of wheat and measured concentrations of soil nutrients in within‐field soil management zones. We considered boundary line models for the effects of potassium (K), phosphorus (P) and magnesium (Mg) on yield, comparing the model with a simple bivariate normal distribution or a bivariate normal censored at a constant maximum yield. We were able to show, using likelihood‐based methods, that the boundary line model was preferable in most cases. The boundary line model suggested that the standard RB209 soil nutrient index values (Agriculture and Horticulture Development Board, nutrient management guide (RB209), 2017) are robust and apply at the within‐field scale. However, there was evidence that wheat yield could respond to additional Mg at concentrations above index 0, contrary to RB209 guidelines. Furthermore, there was evidence that the boundary line model for yield and P differs between soils at different pH and depth intervals, suggesting that shallow soils with larger pH require a larger target P index than others.Highlights Boundary line analysis is one way to examine how soil variables influence crop yield in large datasets.We showed that boundary line models could be applied to large datasets on soil nutrients and crop yield.The resulting models are consistent with current practice for P and K, but not for Mg.Models suggest that more refined recommendations for P requirement could be based on soil pH and depth.

Highlights

  • Farmers commonly add the essential plant nutrients, potassium (K), phosphorus (P) and magnesium (Mg), to the soil in fertilizers and manures

  • It is interesting that the boundary line model is commonly preferable to the multivariate normal distribution or multivariate normal with a constant censor to represent the joint variation of soil nutrient concentrations and crop yield

  • This suggests that RB209 Index values could be used as guidelines for spatially variable management of these nutrients at the within-field scale

Read more

Summary

| INTRODUCTION

Farmers commonly add the essential plant nutrients, potassium (K), phosphorus (P) and magnesium (Mg), to the soil in fertilizers and manures. If growers ensure that concentrations of a soil nutrient are maintained within a range of values where the boundary line model is at maximum yield, they reduce the risk that the nutrient will limit crop production ( other factors might). This was the approach taken by Walworth, Letzsch, and Sumner (1986) to define diagnostic norms for nutrient concentrations in plant tissue, and by Evanylo and Sumner (1987) and Evanylo (1990) to define target values for soil nutrients for soya bean and cucumber crops. We look at how greater granularity in recommendations might be obtained by examining the boundary model for yield and soil P in soil subsets defined by pH intervals and soil depth

| MATERIALS AND METHODS
| RESULTS
| DISCUSSION
| CONCLUSIONS
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call