Abstract

The stability and dynamics of nonlinear Schrödinger superflows past a two-dimensional disk are investigated using a specially adapted pseudo-spectral method based on mapped Chebychev polynomials. This efficient numerical method allows the imposition of both Dirichlet and Neumann boundary conditions at the disk border. Small coherence length boundary-layer approximations to stationary solutions are obtained analytically. Newton branch-following is used to compute the complete bifurcation diagram of stationary solutions. The dependence of the critical Mach number on the coherence length is characterized. Above the critical Mach number, at coherence length larger than fifteen times the diameter of the disk, rarefaction pulses are dynamically nucleated, replacing the vortices that are nucleated at small coherence length.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.