Abstract

The influence of a magnetic field on the boundary layer on a flat plate in a sufficiently strongly ionized gas stream is studied. The magnetic field is parallel to the plate and to the velocity of the free stream, and it is so strong that the transport coefficients become anisotropic (the cyclotron rotation frequency of the charged particles is greater than or equal to the order of the frequency of the particle collisions). Using the results of [1–3] it is shown that the effect of the strong longitudinal magnetic field with a sufficiently high degree of gas ionization leads to a reduction in the thermal flux to the plate. For low degrees of ionization this effect is very small, since the viscosity and heat conduction in this case are determined by the neutral component of the gas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.