Abstract

In this paper, we consider an initial-boundary value problem of Hsieh's equation with conservative nonlinearity. The global unique solvability in the framework of Sobolev is established. In particular, one of our main motivations is to investigate the boundary layer (BL) effect and the convergence rates as the diffusion parameter $\beta$ goes zero. It is shown that the BL-thickness is of the order $O(\beta ^{\gamma })$ with $0<\gamma <\frac {1}{2}$. We need to point out that, different from the previous work on nonconservative form of Hsieh's equations, the conservative nonlinearity $(\psi ^{\beta }\theta ^{\beta })_x$ implies that new nonlinear term $\psi _x^{\beta }\theta ^{\beta }$ needs to be handled. It is important that more regularities on the solution to the limit problem are required to obtain the convergence rates and BL-thickness. It is more difficult for initial-boundary problem due to the lack of boundary conditions (especially, higher-order derivatives) prevents us from applying the integration by part to derive the energy estimates directly. Thus it is more complicated than the case of nonconservative form. Consequently more subtle mathematical analysis needs to be introduced to overcome the difficulties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call