Abstract

Laminar boundary layer flows behind constant speed shock waves moving into a dusty gas are analyzed numerically. The basic equations of two-phase flows are derived in shock fixed coordinates and solved by an implicit finite-difference method for the side wall boundary layer in a dusty gas shock tube. The development of the boundary layer and resulting velocity and temperature profiles, respectively, for the gas and particles are given from the shock front to far downstream. The effects of diaphragm pressure ratio, mass loading ratio of particles and particle size upon the flow properties are discussed in detail.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call