Abstract

In this work, the boundary layers over a continuously stretching sheet with a power law surface velocity were revisited for a sheet with variable thickness. Based on the boundary layer assumptions, the similarity equation governed by two parameters, namely the velocity power index and the wall thickness parameter, was obtained and solved numerically. Theoretical analysis was conducted for special conditions and analytical solutions were derived for the velocity power indices m=-13 and m=-12. Numerical techniques were used to solve the similarity equation for general conditions. Quite different and interesting flow behavior was found for negative power indices. Multiple solutions were obtained for certain wall thickness parameter and velocity power indices. Velocity overshoot near the wall was observed for certain solution branches. It is found that the non-flatness of the stretching surface has significant impacts on the boundary layer development along the wall, on the velocity profiles, and on the shear stress distribution in the fluid. When the velocity power index is less than one, the non-flatness introduces a mass suction effect; while when it is greater than one, the non-flatness leads to a mass injection effect. The results for a non-flat stretching sheet offer quite interesting nonlinear behaviors and further enrich the solution and understanding of boundary layers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.