Abstract

This study presents the numerical solutions of boundary layer flow and heat transfer over a stretching sheet with viscous dissipation and internal heat generation. Thermal boundary condition on the surface, namely prescribed heat flux (PHF) is used. The governing nonlinear partial differential equations are transformed into nonlinear ordinary differential equations by applying the similarity transformations before reduced to the system of first order ordinary differential equations. Then the system of first order ordinary differential equations is solved numerically using an implicit finite difference scheme, known as the Keller-box method. The numerical solutions are generated using MATLAB. Temperature profiles and the temperature gradient for some values of the Prandtl number, Eckert number and heat/source sink parameter are presented in figures and discussed in details.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.