Abstract

The boundary layer development on the suction side of a high-lift LP turbine profile has been experimentally investigated under steady and unsteady flow conditions in the range of Reynolds numbers between 70000 and 300000. Upstream wake periodic perturbations are generated by means of a tangential wheel of radial rods. The paper reports the results of the investigations performed for both steady and unsteady inflow cases (reduced frequency f+ = 0.62) for Re = 300000 and Re = 70000, representative of nominal and reduced Reynolds number operating conditions, respectively. A phase-locked ensemble-averaging technique has been employed to reconstruct the phase-averaged velocity and unresolved unsteadiness boundary layer profiles from the hotwire instantaneous velocities. Phase sequences of the boundary layer development, as well as time-space plots of velocity and unresolved unsteadiness in normal and streamwise directions highlight the complex wake/boundary layer interaction mechanism. While at the larger test Reynolds number the wake/boundary layer interaction does not substantially influence the transition process, at the lower test Reynolds number the boundary layer wake receptivity triggers the transition process, strongly attenuating the large separation bubble occurring at steady conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.