Abstract

Comprehensive experiments and computational analyses were conducted to understand boundary layer development on airfoil surfaces in multistage, axial-flow compressors and LP turbines. The tests were run over a broad range of Reynolds numbers and loading levels in large, low-speed research facilities which simulate the relevant aerodynamic features of modern engine components. Measurements of boundary layer characteristics were obtained by using arrays of densely packed, hot-film gauges mounted on airfoil surfaces and by making boundary layer surveys with hot wire probes. Computational predictions were made using both steady flow codes and an unsteady flow code. This is the first time that time-resolved boundary layer measurements and detailed comparisons of measured data with predictions of boundary layer codes have been reported for multistage compressor and turbine blading. Part 1 of this paper draws a composite picture of boundary layer development in turbomachinery based upon a synthesis of all of our experimental findings for the compressor and turbine. Parts 2 and 3 present the experimental results for the compressor and turbine, respectively. Part 4 presents computational analyses and discusses comparisons with experimental data. For both compressor and turbine blading, the experimental results show large extents of laminar and transitional flow on the suction surface of embedded stages, with the boundary layer generally developing along two distinct but coupled paths. One path lies approximately under the wake trajectory while the other lies between wakes. Along both paths the boundary layer clearly goes from laminar to transitional to turbulent. The wake path and the non-wake path are coupled by a calmed region which, being generated by turbulent spots produced in the wake path, is effective in suppressing flow separation and delaying transition in the non-wake path. The location and strength of the various regions within the paths, such as wake-induced transitional and turbulent strips, vary with Reynolds number, loading level and turbulence intensity. On the pressure surface, transition takes place near the leading edge for the blading tested. For both surfaces, bypass transition and separated-flow transition were observed. Classical Tollmien-Schlichting transition did not play a significant role. Comparisons of embedded and first-stage results were also made to assess the relevance of applying single-stage and cascade studies to the multistage environment. Although doing well under certain conditions, the codes in general could not adequately predict the onset and extent of transition in regions affected by calming. However, assessments are made to guide designers in using current predictive schemes to compute boundary layer features and obtain reasonable loss predictions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.