Abstract
Abstract The focus of this article is the impact of surface roughness on the boundary layer caused by a 7YSZ thermal barrier coating (TBC). Experimental investigations are conducted on a NGV installed inside the wind tunnel for Straight Cascades Göttingen (EGG). The shape of the vane has been altered in a way that eliminates the influence of TBC's thickness. Therefore, it is expected that only the surface roughness is influencing the location of the separation and boundary layer transition. The transition next to the roughness can also be affected by positive and negative pressure gradients, separation, and interacting shocks. The impact of TBC on the turbulent wedges' appearance, separation bubble's position and length, and transition location is examined in this study. This research, combined with prior investigations, provides a comprehensive understanding of a turbine vane's aerothermodynamics. To investigate unsteady flow phenomena on a TBC-coated NGV, ultra-fast-response temperature-sensitive paint (iTSP) is utilized. This dataset will serve as a reference point for developing new turbine vane designs that include TBC and extensive cooling. Furthermore, the findings will be employed as a benchmark for improving numerical models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.