Abstract

This expository paper is concerned with the direct integral formulations for boundary value problems of the Helmholtz equation. We discuss unique solvability for the corresponding boundary integral equations and its relations to the interior eigenvalue problems of the Laplacian. Based on the integral representations, we study the asymptotic behaviors of the solutions to the boundary value problems when the wave number tends to zero. We arrive at the asymptotic expansions for the solutions, and show that in all the cases, the leading terms in the expansions are always the corresponding potentials for the Laplacian. Our integral equation procedures developed here are general enough and can be adapted for treating similar low frequency scattering problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.