Abstract

In boundary element analysis, first order function derivatives, e.g., boundary potential gradient or stress tensor, can be accurately computed by evaluating the hypersingular integral equation for these quantities. However, this approach requires a complete integration over the boundary and is therefore computationally quite expensive. Herein it is shown that this method can be significantly simplified: only local singular integrals need to be evaluated. The procedure is based upon defining the singular integrals as a limit to the boundary and exploiting the ability to use both interior and exterior boundary limits. Test calculations for two- and three-dimensional problems demonstrate the accuracy of the method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call