Abstract

The procedure describes the derivation of boundary integral equations for surface acoustic waves propagating under periodic metal strip gratings with piezoelectric films. It takes into account the electrical and mechanical perturbations, including the effects of mass loading caused by the gratings with an arbitrary shape. First, an integral equation is derived with line integrals on the boundaries within one period. This derivation is based on Hamilton's principle and uses Lagrange's method of multipliers to alleviate the continuous conditions of the displacement and the electric potential on the boundaries. Second, boundary integral equations corresponding to each substrate, piezoelectric film, metal strip, and free space region are obtained from the integral equation using the Rayleigh-Ritz method for admissible functions. With this procedure, it is not necessary to make any assumptions for separation of the boundary conditions between two neighboring regions. Consequently, we clarify the theoretical basis for the analytical procedure using boundary integral equations for longitudinal LSAW modes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.