Abstract
The task of human parsing aims to segment the human body into different semantic regions. Despite advancements in this field, there are still two issues with current works: boundary indistinction and parsing inconsistency. In this paper, we investigate how to utilize structural information and auxiliary information to jointly solve the above two problems. Drawing inspiration from Transformer architecture, a Boundary-guided Part Reasoning Network (BPRNet) is proposed to combine edge information and associated semantics of body parts for human parsing. Specifically, we design a part representation module to represent human body parts as part features. Based on the Transformer decoder, a multi-head self-attention is used to capture the semantic correlation between the human body. Moreover, we propose a boundary-guided module consisting of absolute boundary attention and reinforced boundary attention. They take advantage of edge information and multi-scale image features to jointly constrain cross-attention to extract global features. Experiments and corresponding results on three public datasets show that the proposed method performs favorably against the state-of-the-art methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.