Abstract

Discrete tomography reconstructs an image of an object on a grid from its discrete projections along relatively few directions. When the resulting system of linear equations is under-determined, the reconstructed image is not unique. Ghosts are arrays of signed pixels that have zero sum projections along these directions; they define the image pixel locations that have non-unique solutions. In general, the discrete projection directions are chosen to define a ghost that has minimal impact on the reconstructed image. Here we construct binary boundary ghosts, which only affect a thin string of pixels distant from the object centre. This means that a large portion of the object around its centre can be uniquely reconstructed. We construct these boundary ghosts from maximal primitive ghosts, configurations of $$2^N$$ connected binary ( $$\pm 1$$ ) points over N directions. Maximal ghosts obfuscate image reconstruction and find application in secure storage of digital data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.