Abstract

This paper proposes a boundary feedback control design for open canal networks using the linearization of boundary conditions. For open canal networks with any types of cross-sections, which can be modelled by the Saint-Venant equations, the characteristic form in terms of Riemann invariants has been established. Under this established characteristic form, the stabilizing boundary control law has been developed by linearizing the boundary conditions for both a single reach and the open-channel network composed by multi-reaches in a cascade. The design of the boundary feedback control laws for both a single canal and the cascaded networks is illustrated in a unified framework, which extends the results in the literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.