Abstract

The heat exchange efficiency of electrically conducting fluids can drop dramatically when they interact with externally imposed magnetic fields. The movement of such fluids under the presence of imposed transverse magnetic fields can generate substantial magnetohydrodynamics (MHD) effects including the need of higher pressure gradients to drive the fluids and lower heat transfer rates due to the laminarization of the flows. Active boundary control can be employed to overcome this disadvantage. We consider in this work a heat exchange process in a 2D MHD channel flow. An extremumseeking scheme is proposed to tune in real time a fixed-structure boundary controller with the ultimate goal of maximizing the outlet temperature of the electrically conducting cooling fluid, and therefore enhancing the efficiency of the heat exchanger. A heat transfer solver based on finite difference techniques is developed to predict the temperature dynamics within the 2D MHD channel, where the velocity dynamics is predicted by a pseudo-spectral solver. Simulation results show the efficiency of the proposed controller.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.