Abstract

We analyze the ground state of the open spin-1/2 isotropic quantum spin chain with a non-diagonal boundary term using a recently proposed Bethe ansatz solution. As the coefficient of the non-diagonal boundary term tends to zero, the Bethe roots split evenly into two sets: those that remain finite, and those that become infinite. We argue that the former satisfy conventional Bethe equations, while the latter satisfy a generalization of the Richardson–Gaudin equations. We derive an expression for the leading correction to the boundary energy in terms of the boundary parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.