Abstract
Numerical modelling techniques are now becoming common for understanding the complicated nature of seismic wave propagation in fractured rock. Here the Indirect Boundary Element Method (IBEM) is applied to study scattering of elastic waves by cracks. The problem addressed in this paper is the diffraction of P and S waves by open 3-D cracks of arbitrary shape embedded in a homogeneous isotropic medium. The IBEM yields the value of the jump of displacements between opposite surfaces of the crack, often called Crack Opening Displacement (COD). This is used to evaluate the solution away from the crack. We use a multi-regional approach which consists of splitting a surface S into two identical surfaces S + and S − chosen such that the crack lies at the interface. The resulting integral equations are not hyper-singular and wave propagation within media that contain open cracks can be rigorously solved. In order to validate the method, we compare results of displacements of a penny-shaped crack for a vertical incident P-wave with the classic results by Mal (1970) obtaining excellent agreement. This comparison gives us confidence to study cases where no analytic solutions exist. Some examples of incidence of P or S waves upon cracks with various shapes are depicted and the salient aspects of the method are also discussed. Both frequency and time-domain results are included.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.