Abstract

The guided wave scattering process by different defects in plate structures is studied with a boundary element method. The purpose is to separate sharp crack-like defects from smooth volumetric-like ones by analyzing the transmission and reflection factors. The traditional normal mode expansion technique has been combined with the boundary element discretization to form a hybrid BEM scheme. With this method, the scattered near-fields and the transmission and reflection coefficients of the far fields on individual modes can be obtained simultaneously. Several features related to the Lamb mode reflection and transmission process in a plate with these defect types are extracted and compared. The theoretical analysis provides a guideline for data acquisition and feature selection for use in the decision algorithm development program via neural nets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.