Abstract

In this study, the impact of the bounding walls on the dynamics of a group of neutrally-buoyant identical rigid spheres freely moving at negligible Reynolds numbers in a wide-gap Couette flow, which is important for understanding the particle migrations presented in concentrated suspensions subjected to inhomogeneous shear flows, is simulated by a three-dimensional boundary-element method (BEM) code. The results show that the particle interactions very close to the bounding walls cause the particle group to migrate away from the walls. As the distance of the bounding walls from the group increases, the migration changes direction and the group then move towards the walls. As this distance continues to increase, the migration of the group decreases and beyond a specific distance from the bounding walls the migration of the group is negligible. In addition, the BEM simulations show that the extent and rate of the migration of the group increase as the inter-particle distance decreases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.