Abstract

In order to simulate dielectric relaxation spectra (DRS) of budding yeast cells (Saccharomyces cerevisiae) in suspension, the complex polarization factor (Clausius-Mossotti factor) beta for a single cell and the complex permittivity of a cell suspension epsilon(sus)* were calculated with a doublet-shaped model (model RD), in which two spheres were connected with a part of a ring torus, using the boundary element method. The beta values were represented by a diagonal tensor consisting of components beta(z) parallel to the rotation axis (z axis) and beta(h) in a plane (h plane) perpendicular to the axis. The epsilon(sus)* values were calculated from the complex permittivity of the suspending medium epsilon(a)* and the components of beta. The calculation was compared with that of a conventional prolate spheroid model (model CP). It was found that model CP could be used as a first approximation to model RD. However, differences existed in beta(z) between models RD and CP; beta(z) showed three relaxation terms in the case of model RD in contrast with two terms in model CP. Narrowing the junction between the two spheres in model RD markedly decreased the characteristic frequency of one of the relaxation terms in beta(z). This suggests that the structure of the junction can be estimated from DRS. Effects of the shape change from model RD to a two-sphere model (model RD without the junction) were also examined. The behavior of beta(z) in the two-sphere model, the relaxation intensity of which was much lower than model RD, was quite similar to that in a single-sphere model. These simulations were consistent with the experimental observations of the dielectric behavior of the yeast cells during cell cycle progression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.