Abstract

The FRP-concrete delamination problem is studied making use of BEM. Cohesive crack model has been adopted for the interface, whereas linear elasticity is used for the two materials outside the process zone. Numerical analyses are carried out by means of symmetric Galerkin boundary element method for cohesive interfaces, adopting the arc-length technique to follow the equilibrium path beyond its critical point. Two different test setups have been numerically simulated and results are compared with experimental tests. For bond lengths longer than minimum anchorage length, tests may exhibit a snap-back branch after the attainment of the maximum force.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.