Abstract

We determine the local density of states (LDOS) for spin-gapped one-dimensional charge density wave (CDW) states and Mott insulators in the presence of a hard-wall boundary. We calculate the boundary contribution to the single-particle Green function in the low-energy limit using field theory techniques and analyze it in terms of its Fourier transform in both time and space. The boundary LDOS in the CDW case exhibits a singularity at momentum 2kF, which is indicative of the pinning of the CDW order at the impurity. We further observe several dispersing features at frequencies above the spin gap, which provide a characteristic signature of spin-charge separation. This demonstrates that the boundary LDOS can be used to infer properties of the underlying bulk system. In presence of a boundary magnetic field mid-gap states localized at the boundary emerge. We investigate the signature of such bound states in the LDOS. We discuss implications of our results on STM experiments on quasi-1D systems such as two-leg ladder materials like Sr14Cu24O41. By exchanging the roles of charge and spin sectors, all our results directly carry over to the case of one-dimensional Mott insulators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.