Abstract
AbstractThe present study focuses on boundary control of nonlinear distributed parameter systems and deals with Dirichlet actuation. Thus, a design approach of a geometric control law that enforces stability and output tracking of a given punctual output is developed based on the notion of the characteristic index. The control performance of the proposed strategy is evaluated through numerical simulation by considering two control problems. The former concerns the control of the temperature of a thin metal rod modelled by a heat equation with a nonlinear source, and the later concerns the control of concentration of a dye in liquid medium modeled by Fick law with nonconstant diffusivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.