Abstract

The classical Stefan problem is a linear one-dimensional heat equation with a free boundary at one end, modelling a column of liquid (e.g. water) in contact with an infinite strip of solid (ice). Given the fixed boundary conditions, the column temperature and free boundary motion can be uniquely determined. In the inverse problem, one specifies the free boundary motion, say from one steady-state length to another, and seeks to determine the column temperature and fixed boundary conditions, or boundary control. This motion planning problem is a simplified version of a crystal growth problem. In this paper, we consider motion planning of the free boundary (Stefan) problem with a quadratic nonlinear reaction term. The treatment here is a first step towards treating higher order nonlinearities as observed in crystal growth furnaces. Convergence of a series solution is proven and a detailed parametric study on the series radius of convergence given. Moreover, we prove that the parametrization can indeed be used for motion planning purposes; computation of the open loop motion planning is straightforward and we give simulation results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.