Abstract
We analyze the interplay between gauge fixing and boundary conditions in two-dimensional U(1) lattice gauge theory. We show on the basis of a general argument that periodic boundary conditions result in an ill-defined weak coupling approximation but that the approximation can be made well-defined if the boundaries are fixed to zero. We confirm this result in the particular case of the Feynman gauge. We show that the zero momentum mode divergence in the propagator that appears in the Feynman gauge vanishes when the weak coupling approximation is well-defined. In addition we obtain exact results (for arbitrary coupling), including finite size corrections, for the partition function and for general one-point and two-point functions in the axial gauge under both periodic and zero boundary conditions and confirm these results numerically. The dependence of these objects on both lattice size and coupling constant is investigated using specific examples. These exact results may provide insight into similar gauge fixing issues in more complex models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.